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Abstract-The radial and circumferential temperatures in the wall of left ventricle (LV) of the heart are 
obtained by solving the bio-heat energy equation for cases of regional death of the muscular tissue (local 
infarction) or local deprivation of oxygen supply (hypoxia) to the muscle. 

The model is an extension of our one-dimensional solution for the radial instantaneous temperatures in 
the wall, based on our mechanical model of the LV function. 

A similar approach yields the effects of the nonsymmetric boundary conditions imposed by the right 
ventricle (RV) on the temperature distribution in the LV wall. 

The results indicate very pronounced local temperature gradients due to local myocardial dysfunctions 
or unsymmetric boundary conditions on the wall. 

1. INTRODUCTION 

THE study of the spatial and temporal temperature 
distribution within the left ventricular wall requires 
the integration and better understanding of the com- 
plex interactions between the mechanics, metabolism 
and blood perfusion of the heart’s muscle, the myo- 
cardium [l]. The problem becomes even more com- 
plicated when local regional inhomogeneities in the 
metabolism are to be considered. 

Several experimental measurements of the tem- 
perature in the myocardium have been reported 
[l-4]. Ten Velden et al. [2, 31 and Elzinga et al. [4] 
measured the local in uiuo temperature in the canine 
left ventricle (LV) myocardium. The latter also meas- 
ured the total heat produced by the heart in the 
infarcted heart as well as local temperatures in local 
and total ischemia. Hernandez et al. [5] measured the 
temperature in three layers of the canine myocardium. 
Reynolds et al. [I] measured the temperature in a 
closed chest canine myocardium as well as the tem- 
peratures in the human right and left ventricles by 
pulling a fine thermocouple through a previously 
punctured pathway through the left ventricle, right 
ventricle (RV) and lungs. Reynolds et al’s experi- 
ments showed the temperature in the external layer of 
the wall, the epicardium, to be higher than that in the 
internal layer, the endocardium. This is opposed to 
the more recent data and the recent observations by 
Eberhart [6] which indicate higher endocardial than 
epicardial temperatures. Related measurements of the 
veno-arterioral temperature difference were reported 
by Neil1 et al. [7]. 

Most investigators have applied the bio-heat equa- 
tion to estimate tissue perfusion [8] while some [2, 91 
used it to calculate the local temperature in the myo- 
cardium by neglecting the time-dependent variation in 
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the perfusion, oxygen consumption and temperature. 
Smaill et al. [9] used constant and steady-state blood 
perfusion and oxygen consumption values for solving 
the heat balance equation in the three-dimensional 
LV wall by a finite-element method. However, all the 
above models are limited by their inherent steady- 
state assumptions, the neglect of the distributed 
nature of the blood perfusion and oxygen consump- 
tion and the assumption of an axial symmetry. 

A solution which accounts for the nonuniform, dis- 
tributed nature of the heat generation across the wall 
is thus highly desired. Barta et al. [lo] have recently 
solved an axial-symmetric, spheroid LV model for 
the time-dependent LV temperature distribution by 
integrating the mechanical model of Beyar and Side- 
man 11 l] (which analyzes the mechanical parameters 
of the LV contraction based on a spheroidal nested 
shell geometry) with their time-dependent distributed 
coronary perfusion model [ll] and their model for 
the time-averaged distribution of the oxygen con- 
sumption [ 13, 141. Solutions were obtained [lo] for the 
radial temperature distributions in closed and open 
chest hearts. 

The present study extends Barta et al.% [lo] analysis 
to include circumferential heat transfer and attacks 
problems associated with regional inhomogeneities 
due to asymmetric perfusion and heat generations 
which occur in cases of regional necrosis (infarction) 
or local ischemia (partial elimination of blood supply) 
as well as other nonsymmetric features of the LV wall. 

2. THE MATHEMATICAL FORMULATION 

2.1. Homogeneous boundary conditions with heat 
fluxes in the radial direction 

A brief description of this symmetric case [lo] is 
given here. 

Consider a transverse section through the equator 
of a thick-wall spheroid.which represents the LV, 
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NOMENCLATURE 

@9, w, C,(r* 41, c*@, 4) R,. R2 radial distance of the endocardium 
coefficients in the heat balance equation and the epicardium, respectively, from 
[cm-‘, cm-?, cmm2, “C cm-‘] center of ventricle [cm] 

C heat capacity of the myocardium t time [s] 
[Jg-‘“C-‘1 T temperature of wall tissue [‘Cl 

cb heat capacity constant of the blood TA epicardial temperature [“Cl 
[Jg-‘“C-‘1 Tb blood temperature [“Cl 

h free heat convection coefficient T, blood temperature in the RV cavity 
[Wm-‘“C-i] [‘Cl 

I an identity matrix (10 x 10) T, air temperature [“Cl 
k heat conduction constant u (r, t) instantaneous reduced local 

[Wcm-‘“C-’ 1 temperature, (T- Tb) [“Cl 
k,, k, perfusion and heat production weight W cycle-averaged local reduced 

factors temperature [“Cl 
ti(r, t) blood perfusion rate in the LV wall w, a tridiagonal matrix (j = 1,. , 11). 

[mlss’g-‘1 
Mp02 myocardial oxygen consumption 

[cm3g-‘s-i] Greek symbols 
4,,,(r) heat due to metabolic energy thermal diffusivity [cm?s ‘1 

[Jcm-3s-i] ;K> YK matrices, defined for the LU 
r radial distance measured from the decomposition 

center of the ventricle to a point at the At time grid spacing in the numerical 
wall [cm] scheme [s] 

r; distance of thejth point in the radial 4 circumferential angle 
net from the center for t = n 0.01 s [cm] P myocardial density [g cm -‘] 

& radial distance of end of infarction Pb blood density [gem--‘I 
from the center of the ventricle [cm] T duration of one heart cycle [s]. 

Fig. 1. The thermal diffusivity of the muscle CI = k/p ti(r, t) - p * pb * cb 
is assumed uniform and constant throughout the c,(r, t) = 

k (3) 

wall. In this symmetric model the temperature gradi- 
ent has only a radial component, r, with no heat &(r) 
fluxes, or gradients, in the circumferential direction. &) = 7 (4) 

The heat balance equation for the range of 
R, < r ,< Rz is given by: ti(r, t) is the instantaneous local blood perfusion rate 

per unit mass of muscle during the cycle. pb and cb are 
1 au ah i au the specific gravity and heat capacity constants of 
u at -==+fr+cCl(r,t)u+cZ(r) (1) blood. Q,,,(r) is the time-averaged (in one heartbeat) 

where u = u(r, t) is the instantaneous local difference 
local metabolic heat production rate, evaluated from 

between the temperature of the myocardial tissue T 
the myocardial oxygen consumption hh’O,(r) at aero- 

and the blood Tb, i.e. 
bic conditions, assuming that 75% of the calcu- 
lated local oxygen consumption is transformed into 

u = u(r, t) s T-T, (2) heat [15]. The energy equivalent of the oxygen con- 
sumption is 19.67 J cm- 3 O2 (corresponding to a molar 
ratio of CO, produced per O2 metabolized of 0.7). 
Thus 

!i END0 

FIG. 1. Spheroidal presentation of the LV. 

d,,,(r) = (19.67 x 0.75) - p - i14vOz(r) 

= 14.75.p*MPOz(r). (5) 

The boundary conditions at the inner wall: the 
endocardium is assumed to be at the temperature 
Tb of the blood in the LV cavity. Thus 

u(t, R,) = 0 0 < t d z (6) 

where T is the duration of one heart cycle. 
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The outer surface, the epicardium, may be assigned 
two different boundary conditions, depending on the 
experimental set-up. 

(a) A given temperature at the epicardium : 

during the cycle of the heart beat. Hence, an ‘average’ 
solution, obtained by integrating equation (1) over 
the whole cycle, is used as a reasonable approximation 
for the time-dependent temperature distribution. 

u(t, R,) = uA 0 < t < T. (7) 

(b) Free convection at the epicardium is applied 

The two-dimensional heat balance equation for the 
cycle-averaged temperature, U(r, 4), is thus given by : 

when the epicardial temperature is unknown. Given 
the free convection heat transfer coefficient h and the 
temperature of the surrounding, T, 

-k;(t,R,)=h[u(t,R,)-u,] O<t<r (8) where: 

where u, = T, - Tb. 
Finally, the periodicity boundary condition is given 

by: 

u(O,r) = U(Z,Y) R, < r < R,. (9) 

The solution procedure of this symmetric one-dimen- 
sional problem is described elsewhere [IO]. 

2.2. Heat balance in asymmetrical cases 
Asymmetric heat transfer problems may be en- 

countered in a variety of cases. Asymmetric problems 
may be due to an asymmetry in heat production and 
perfusion, as occurs in myocardial infarction when 
part of the muscle is not perfused and does not gener- 
ate heat (Fig. 2a), as well as due to a natural asym- 
metry in the boundary conditions (Fig. 2b). The latter 
occurs normally in the LV, where the temperature at 
part of the external layer of the LV wall is affected by 
the lungs while part, the septum, is in contact with the 
blood in the right ventricle. 

Note that 1? and its derivatives are assumed to be time 
independent throughout the whole cycle. 

2.2.1. Totally or partially inactive LV regions 
(asymmetrical perfusion and heat generation). An 
infarcted, totally inactive, region in the wall muscle is 
not perfused, does not consume oxygen and does not 
generate heat. An ischemic region is characterized 
by a decrease in the local blood perfusion and heat 
generation. Mathematically, this implies that both 
C,(r, 4) and c2(r, q%) are considerably diminished with 
respect to the healthy normal tissue. 

When symmetry is violated due to a pathological 
decrease of the local blood supply, leading to either 
ischemia or infarction, or by variations of boundary 
conditions with the circumferential angle (e.g. the 
epicardial conditions at the free wall are different from 
those at the septum), the functions u(r, t), c,(r, t) and 
cl(r) in equation (1) convert to u(r, I#J, t), c,(r, 4, t) and 
c2(r, r$), respectively. However, the time factor in the 
present model is eliminated, based on our earlier find- 
ing [lo] that the local temperature does not change 

We denote the normal values of the convection and 
metabolic heat by c,(r)u and cZ(r), respectively. Then, 
for the pathological region : 

cz(r. 4) = 
k2c2(r) Ml G 4, R, <r < R,, 

c (r) 
2 otherwise 

EPICARDIUM 
2 

FIG. 2(a). Schematic presentation of asymmetric cases: 
myocardial infarction. 

+ Cl@, 4&+c2(r, 4) (10) 

A(r) = i Or-&dt 
s 

(11) 

(12) 

C,(r, 4) = f o’c,(r, 4, t)dt. s (13) 

141 G 4, R,<r<R, 
otherwise 

(14) 

where 0 < k,, k2 < 1 are the perfusion and heat pro- 
duction weight factors, respectively, which depend on 
the pathological status in the region I&J] < rj,, and 
R, < r < R,. R, < R? describes a subendocardial 
pathology (in part of the wall thickness) while R, = R, 
describes a transmural (across the wall) pathology. 
For convenience we choose the coordinate system so 
as to locate the center of the pathological area at 
Cp = 0. The solution is formulated for half of the origi- 
nal region (0 < 4 < rc), using the following continuity 
conditions : 

aii 
;g(r,o)=o R, <r<R, (15) 
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FIG. 2(b). Schematic presentation of asymmetric cases: nonsymmetric boundary condition. Effect of the 
right ventricle. 

The other boundary conditions are given by equations 
(6) and (8), with the latter now valid for 141 < n. 

2.2.2. Effect of the RV (nonsymmetrical epicardial 
boundary conditions). As seen in Fig. 2b, part of the 
LV wall is in contact with the lung, and part (the 
septum) is in direct contact with the blood in the RV. 
This forms an asymmetric temperature distribution 
with a circumferential as well as a radial component. 
It is assumed that the blood perfusion rate and heat 
generation rate are uniform throughout the wall, i.e. 

C,(r, 4) = C,(r), and cz(r, 4) = 44. 
Without loss of generality we may take 4 = 0 at the 

center of the septum and thus the problem becomes 
symmetric around the I$ = 0, 4 = n axis. The boun- 
dary conditions for this case include equations (15) and 
(16). Also, equation (6) holds at the endocardium and 
(8) holds at the epicardium (r = R,, 141 -C c#Q). Finally, 
it is assumed that at the septum (r = R2, 141 2 4,) the 
temperature equals the bulk temperature T, in the 
RV cavity. Thus 

$R,, 4) = u, I41 2 41 (17) 

where U, = T, - Tb. The numerical solution of equa- 

tion (10) for the asymmetric cases is summarized in 

the Appendix. 

3. RESULTS 

3.1. Symmetric normal cases 
The solution of the bio-heat balance equation for 

the symmetrical case is described in detail elsewhere 
[lo]. In general, higher temperatures are found in the 
middle layers, and the local temperatures are essen- 
tially time independent (within O.OOS”C) throughout 
the heart beat cycle. The wall temperatures increase 
due to the increased heat production as the heart rate 
increases, in spite of the evident increase in blood 
perfusion and the heat convected throughout the 
tissue. The epicardial temperature is dictated by the 
free convection and reflects the metabolic state of 
the heart. The higher the value of h, the lower is the 
epicardial temperature. The physical constants and 
the normal values of perfusion and oxygen con- 
sumption are given in ref. [lo]. The coronary venous 
blood temperature and the dissipation modes of the 
total heat generated in the subendocardial and subepi- 
cardial layers are given in Table 1 for different heart 

Table 1. Heat generation and transfer rate by different mechanisms in the myocardium : Th = 37.5’ C, 
T, = 37.25”C 

Absolute value of heat due to 

Metabolic Temperature of 
energy Convection Conduction venous blood 

HR Layer (Jcm-‘s-l) (J cm -‘s-V (J cm-3 s-l) (“C) 

60 subendo.* 0.0243 0.0076 0.0164 
subepi.? 0.020 0.0049 0.0154 37.646 

90 subendo.* 0.0367 0.0132 0.023 
subepi.? 0.0282 0.011 0.0175 

37.744 

120 subendo.* 0.0551 0.0236 0.0318 
subepi.? 0.0369 0.0178 0.0193 

31.195 

*At I = R,+Ar,. 
tAt r = R,-(Ar,,l+Ar,). 
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Normal tissue 

HR = 60 cpm 
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Necrosis (k, = k, = 0) 

Free convection, h =14.65 Wni’oi’ 
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FIG. 3. Effect of a transmural infarct on the temperature FIG. 4. Temperature distribution as a function of the physio- 
distribution at various circumferential cross sections. logical performance of the infarcted areas, 

rates. As can be seen, the relative importance of con- in terms of the weight factors k, and k,, in the ischemic 
vection increases as compared to conduction as the region is demonstrated in Fig. 4. As seen, a nonlinear 
heart rate increases. Note that the total metabolic heat relation exists between the epicardial temperature and 
produced at the subendocardium at 120 c.p.m. is more the severity of the decline in the muscle’s activity. In 
than double the value at 60 c.p.m., and the ratio of Fig. 5 a sharp difference exists between the tem- 
the subendocardial to subepicardial heat production perature distributions in the subendocardial (partial) 
increases from 1.2 to 1.5 at 120 c.p.m. as compared and the transmural (total) infarcted areas. The resem- 
to 60 c.p.m., with a simultaneous increase of con- blance of the 20% and 50% subendocardial curves 
vection in the epicardium. and the curve for the normal myocardium (especially 

3.2. Total and partial regional inactivity (infarction 
and &hernia) 

The strong effect of a transmural infarct on the 
temperature distribution is demonstrated in Fig. 3. In 
contrast to the parabolic shape that characterizes the 
temperature distribution in a healthy LV (corre- 
sponding to the 4 = rr curve in Fig. 3, the infarcted 
region is characterized by a monotonic (almost linear) 
decrease in temperature between the relatively high 
temperature at the endocardial surface and the lower 
temperature at the epicardium. This is expected, since 
no heat is convected or generated within the necrotic 
(dead) wall. The significant difference between the 
curves at 4 = 3x/20 and 4 = 4a/20 in Fig. 3 demon- 
strates the rapid disappearance of the effect of the 
infarction on its close surroundings. Note that in this 
figure we have used a dense numerical net, defined 
by halving the interval between consecutive circum- 
ferential net points. Thus, the curves $I = 3rc/20 
and 4 = 4x/20, whose epicardial temperatures differ 
by 2.75”C, represent two adjacent points, 2.5 cm 
apart, on the epicardial layer. 

The dependence of the temperature distribution on 
the rate of p,erfusion and heat production, expressed 

HR = 60 cpm 

Transmurol mforctlon 

Infarcted cwcumfrence = 20% 

Free convectmn, h = 14.65 Wm-’ “c-’ 

360 

375 

370 

p 365 

L 
2 360 
4 

% 
: 355 
I- 

350 

345 

340 

(Transmurol Infarct 1 

HR = 60 cpm 

Necrosis (ki = k, = 0) 

FIG. 5. Effect of the depth of the infarcted region on the 
myocardial temperature distribution. 
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at the subepicardial layer) is another indication of the 
sharp drop in the interaction between the healthy and 
the unhealthy tissue. 

As is to be expected, the temperature distribution 
at the center of the infarcted area is independent of 
the heart rate. This is due to the absence of perfusion 
or metabolic heat and the fact that the heat flux from 
the healthy tissue to the adjacent infarcted tissue is 
negligible. 

Other features, such as the dependence of the tem- 
perature on the free convection constant, etc., were 
also investigated. No qualitative differences were 
found between the symmetrical and the non- 
symmetrical cases and the presentation is omitted for 
the sake of brevity. 

3.3. Eflect of the R V 
The solution of the bio-heat problem for a normal, 

functioning human heart is shown in Fig. 6. The bulk 
temperature in the RV cavity is taken to be 0.3”C 
higher than the bulk temperature in the LV cavity, 
corresponding to the measurements of the average 
veno-arterial temperature gradient by Neil1 et al. 171. 

The region of contact between the RV and the LV 
(the septum, Fig. 2b), is 40% of the total area of the 
wall. It is clear from Fig. 6 that the RV has an effect 
only on its immediate surrounding. In order to detect 
this effect, we use a double numerical net. as in Fig. 
3. The analysis shows that the temperature change 
is about 0.35”C at a distance of about 2.5 cm on R, 

between two adjacent numerical sections across the 

At center of Septum 

septum) 

I- 374 _ HR = 60 cpm 

Septum circumference = 40% 

Free convec+,on, h = 12 56 WI? T-’ 
373 - 

372 - 

cpwxrdum 

FIG. 6. Temperature distribution in the septum and the free 
LV wall. 

border zone. This typical result indicates that the tem- 
perature at the epicardium can be comfortably 

approximated by the simpler symmetrical model 
described above which is not affected by the non- 
symmetric nature of the problem even at 
proximity. 

close 

4. DISCUSSION AND CONCLUSIONS 

The interdependency of tissue and blood tem- 
peratures is not known explicitly. However, the con- 
ditions of very slow blood flow in the capillary bed 
favor a complete thermal equilibrium between the 
blood and the surrounding tissue. It is shown by Chen 
[16] that most of the heat is transferred through vessels 
whose diameter is between that of the terminal arterial 
branch and that of the precapillary arteriole. Thus, it 
is reasonable to assume that most of the heat transfer 
between blood and tissue takes place in the micro- 
circulatory bed, i.e. the arteriole and the venules. 
As suggested by Westerhoff et al. [17], some of the 
heat is also being transferred at the level of the larger 
penetrating arteries. This may, in fact, change the 
temperature distribution, introducing another, as yet 
unexplored, part of the convection. 

The classical application of the bio-heat transfer 
equation, equation (l), for blood flow estimation, 
assumes that the blood flow in the tissue is randomly 
and uniformly oriented with respect to the arterioral 
and venular conduits and that the local heat gener- 
ation is a nondirectional property. 

The integrated model [14] used here describes the 
coronary blood flow distribution and the local oxygen 
consumption and enables the evaluation of the tem- 
perature distribution within the LV wall for various 
symmetric and nonsymmetric cases, corresponding to 
various physiological and pathophysiological con- 
ditions. The symmetrical cases for which a time- 
dependent as well as a cycle-‘averaged’, time-inde- 
pendent solution are suggested, include two types of 
epicardial boundary conditions. The asymmetrical 

cases describe the effect of an infarction in the LV and 
account for the effect of the RV on the temperature 
in the LV myocardium. 

The main conclusion drawn from the study of the 
symmetrical case of Barta et al. [lo] relates to negli- 
gible time dependence of the local temperature. This 
fact is used here for the time-averaged solutions of the 
asymmetrical cases. The most important conclusions 
drawn from the asymmetrical model are : 

1. 

2. 

Ischemia or infarction, either transmural or sub- 
endocardial, has a significant effect on the tem- 
perature distribution in the myocardium. 
The interacting effects of the healthy and the ad- 
jacent infarcted area diminish rapidly very close to 
their contact area. This also suggests the potential 
for a thermal procedure as a tool for the identi- 
fication of an infarcted region in the muscle of the 
heart. 



Temperature distribution in the wall of the heart 1259 

As for the above case the effect of the RV on 
the temperature distribution within the LV wall is 
restricted to a very narrow zone near the border 
with the septum. Thus, as above, a symmetric 

10. 

model may be used for the computation of the 
tem~rature dist~bution of the healthy LV. Il. 

There is a fair qualitative agreement between the 
present model and the available experimental data. 
However, more accurate comparisons between 12. 
theory and measurements require more detailed 
data, especially for the circumferential tempera- 
ture distribution in an infarcted LV. 13. 
The computation presented here for the two-dimen- 

sional, asymmetrical case is based on the local cycle- 
‘averaged’ temperature and is thus a time-saving, 

14. 

procedure. However, a computation of the time- 
dependent solution is possible as well A natural ex- 
tension of this model is a model for an asymmetric, 
time-dependent temperature distribution which may 
be used to simulate the temperature changes involved 

15. 

during the formation of an infarction in the muscle of 16. 

the heart. However, as shown in Fig. 5 of ref. [4] the 
difference between the temperature distributions 5 and 
20 min after the start of infarction fo~ation are 17. 
rather small, thus discouraging undue efforts in this 
direction. 
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rJ = r,_,+Ar,_,; j= l,...,ll 

(ri = R, ; rll = 4). 
The boundary conditions are : 

For the problem dealing with the infa~tion of the LV 

z41J = 0 (A2) 

B. H. Smaill, J. Douglas, P. J. Hunter and I. Anderson, u12J-uIoJ 
Heat transfer in the left ventricle. In Heat Perfusion, 

-k- 
2Ar,, 

= h(u,,J-u,). 

j=i ,..., 11 i=2 ,..., 11. (Al) 

The numerical net consists of 10 equal thickness layers in 
the circumferential direction and 10 nonequal thickness 
layers in the radial direction (as used in the symmetric case). 
Thus, the numerical solution uij is the temperature u at points 
(r,) where : 

4, = (j- tfA4 
A\qb = l/lOn 
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Addition of the artificial points ui 0 and ui, I z is necessary 
for writing the other boundary conditions : 

ui.0 = 4.2 (A4) 

ai,12 = %.IO. (A5) 

For the problems dealing with effect of the RV, the appro- 
priate boundary conditions are equations (A2), (A4), (A5) 
and equation (A3) which holds here for j < J where 
JA# = 4,. 

For j > J we have : 

u 12J = 4. (‘46) 
The numerical scheme forms a system of 110 linear equa- 
tions. 

In equation (A3) we use artificial points rlzj which are 
added to the numerical net with a distance of Ar,, from r, ,$ 
In equation (A6) the artificial points are added very close to 
r, ,j [in order to simplify the computations it is assumed that 
u = I(. for r = R2+~ (and not for r = R,)]. Thus, for every 
4, a solution has to be found in 10 radial net points. 

The computational procedure is simplified by utilizing the 
following scheme : 

Define the vectors N, = {u~,~, . , u, ,,i}. Equation (Al) is 
then expressed as 

WIN,-2N, = y, i= l,...,ll 

Wflj--N;_,--N,,, = y, 

W,,N,,-2N,o = YI, (A7) 

where W,(j = 1,. , 11) is a tridiagonal matrix. Thus, the 
following block tridiagonal system has to be solved: 

1 
W, -2r.,, 0 

-Z, wz, ‘-I 
‘, ‘. 

‘\\ ‘. ‘. 

-I, ‘\x._ 
‘. 

‘1 
-1 

0 ‘-21 “w, 

where Zis the identity 10 x 10 matrix. 
LU decomposition which takes advantages of the special 

structure of the system, leads to the following system : 

d 0 YI \2 

\ 
’ ‘1 \ 

’ ‘\ 
0 ‘\ d, 

\ 
YII 

N 

VI I = 
where 

yk= W,-/$A,; k=2,...,11 (A9) 

-Z 2<k<lO 
6, = -2Z k= 11 

dk = 

Yl 

Yl I 

-21 k=2 

-z 3<k< 11. 

The inverse matrices y;’ are computed by using the 
LINV2F subroutine of the IMSL library. 

DISTRIBUTION DE TEMPERATURE DANS LE TEMPS ET L’ESPACE POUR UN 
COEUR LOCALEMENT MALADE 

R&m&--Les temperatures dan la paroi du venticule gauche du coeur sont obtenues en resolvant l’equation 
biothermique dans les cas de mort locale du tissu musculaire (infarctus localisb) ou l’absence locale 
d’oxygenation (hypoxie) du muscle. 

Le modile est une extension d’une precedente solution monodimensionnelle pour les temperatures 
instantan& radiales dans la paroi, basee sur le modele mtcanique de la fonction ventriculaire gauche. 

Une demarche semblable tient compte des effets des conditions aux limites dissymetriques impostes par 
le ventricule droit sur la distribution de temperature dans le ventricule gauche. 

Les resultats indiquent des gradients locaux de temperature tr& pronon& dus aux mauvais fonction- 
nements locaux myocardiaux ou aux conditions aux limites non symetriques sur la paroi. 

RAuMLICHE uND ZEITLICHE TEMPERATURVERTEILUNG IN DER GESUNDEN 
um ORTLICH ERKRANKTEN WAND DES HERzENS 

Znsammenfassung-Die Temperaturen (radial und in Umfangsrichtung) in der Wand der linken Herz- 
kammer (LV) werden durch Losung der Biowiirmeenergiegleichung fiir Fiille des iirtlichen Absterbens 
von muskullrem Gewebe (lokaler Infarkt) oder ijrtlicher Beeintrachtigung der Sauerstoffversorgung zum 
Muskel (Hypoxie) berechnet. Das Model1 stellt eine Erweiterung unserer eindimensionalen Liisung fur die 
radialen Momentantemperaturen in der Wand, basierend auf unserem mechanischen Model1 der LV- 
Funktion, dar. Eine lhnliche Nlherungslosung zeigt den EinfluB der nichtsymmetrischen randbedingungen 
durch die rechte Herzkammer auf die Temperaturverteilung in der LV-Wand. Die Ergebnisse weisen auf 
deutlich ausgeprlgte Grtliche Temperaturgradienten infolge ijrtlicher Fehlfunktion des Herzmuskels oder 

unsymmetrische Randbedingungen in der Wand hin. 
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nPOCTPAHCTBEHHOE M BPEMEHHOE PACLIPEJJEJIEHME TEMI’lEPATYPbl B 
3AOPOBOM CEPAUE M CEPQUE C JIOKAJIbHO nOPAXEHHOfi CTEHKOti 

AHHOTaUHfl-PanManbHaSI M 0Kpy)KHaR TeMUepaTypbl B CTeHKe neBOr0 EenynO'4Ka (LV) CepilUa nOny- 

9eHb1 ~3 pemeHm ho-TennoeoA 3anaw nnx cnysaes qacTmHor0 oh4epTsewia MbuewoB TKatni 

(noKanbHbG kiH+apKT) Mm noKanbHor0 npeKpameHHx nocTyna Kkicnopona (ranoKckia) K MbUuUe. 

Moaenb IlBnReTCIl pa3BMTUeM HaUIerO peU,eHAR OnHOMepHOii 3aAa'W Anll paArtanbHbIX TeMnepTyp B 

CTeHKe. OCHOBaHHOrO Ha MeXaHWieCKOii MOnenM LV-&I~HKUHH. AHanOrWHblti nonxon "OSBOnReT 

OUeHMTb BnHIlHMe HCCHMMeTp‘NHbIX rpaHH'!HblX yCnOBd,BbI3BaHHbIX U,,aBbIM ,KenynO9KOM,Ha paCnpe- 

IWleHMe TCMnCpaTypbl B LV-CTCHKe. &tHHblC nOKa3bIBa,OT 3aMeTH0 BblpiiXeHHble rpnMeHTbl nOKa,,b- 

HOti TCMnepaTypbl B pe3ynbTiiTC MCCTHblX MMOKapAHa.'lbHblX nW$yHKUHii Hnll HCCHMMeTpWHblX 

I‘paHMWblX yCnOBHti HaCTeHKe. 


